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Generators of Magnetic Groups of

Symmetry and Commutation Relations
Victor A.

Abstract— A general procedure is given for determining the
matrices [S], [Z]. and [Y] of linear symmetrical multiports with
gyromagnetic media. To obtain relations between the elements

of the matrices, the color groups, the Curie principle, and the
concept of gyrotropic symmetry (GS) and gyrotropic antisym-
metry (GA) are used. Symmetries of the dc magnetic field are

also considered. General properties of the multiports with GS

and GA are discussed. Applications of the symmetry analysis are
illustrated by two 3-D structures and some existent devices.

I. INTRODUCTION

N ONRECIPROCAL and control devices with ferrites

have many applications in radioelectronics in a wide

range of frequencies, both in radio and optical domains.
Among these devices, there are reciprocal and nonreciprocal

microwave two-, three-, four-, and multiports, such as

isolators, phase shifters, circulators, switchers, nonrecip-

rocal dividers/combiners, control directional couplers, etc..

Some of them fulfill several functions simultaneously; e.g.,

dividing/combining and isolating [1], [2], dividing and

adjustable phase shifting [3], and isolating and transforming

of impedances [1], [2]. Several nonreciprocal elements with

magnetooptic materials have been proposed in optics. Many

of these devices with good performances are available

commercially. A vast number of papers and many books

are devoted to the subject.

These devices are based on different physical effects and

on the use of various transmission lines. Some of them have

3–D structures. Rigorous electrodynamics methods of analyzing

such devices are often very complicated. At the same time,

considerable results can be obtained by using the network

theory. Matrix methods with the condition of unitarity allow

us to find out some general properties of multiports witbout

having to solve Maxwell’s equations, to define realizability of

different functions, etc. Unfortunately, in many cases a general

matrix analysis of multiports is difficult because of the large

number of parameters of their matrices.

Considerable simplification of the problem is achieved by
the use of the theory of symmetry, Most existent devices

exhibit different types of spatial (geometrical) symmetry-

mirror reflection in a plane, rotation and others. By virtue of

symmetry analysis, the number of independent elements of the

matrices (scattering [S], impedance [Z] and admittance [Y])

may be reduced significantly. Intensive work in the analysis of

symmetrical reciprocal waveguide junctions has been made by

Montgomery et al. [4] and thoroughly carried out by Kerns [5].
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When ferrites appeared in the microwave technology, the

theory of symmetry and the apparatus of point groups have

been used to analyze and synthesize the N-port circulators

[6]. This approach does not differ from that being used for the

reciprocal devices. Bidirectionality and mode orthogonality in

nonreciprocal waveguides have been treated by Mc Isaac [7],

[8], The [S]-matrix for the two-port with gyrotropic media has

been written in [9].

In the 1960’s and 1970’s, works concerning symmetry of the

electromagnetic field in gyrotropic media were accomplished

by Kong [10], Someda [1 1], Rao and Wu [12], and others.

Later, Altman, Schatzberg, and Suchy [13], [14] investigated

symmetry transformations and time reversal of currents and

fields in (bi)anisotropic media in a generalized form.

The problem of symmetry properties of the devices with

gyromagnetic media is more complicated than that of the

devices with isotropic media. The device with gyromagnetic

media presents a geometric-physical object which has a certain

geometrical symmetry and a symmetry of the magnetization

(or external biasing magnetic field no). Hence, we have to

consider the symmetry of the system: the geometrical structure

plus magnetic field,

One type of the possible symmetries has been considered

in the classical paper [6], namely, the N-fold rotational one.

It is a particular case of the general one called gyrotropic

symmetry (GS) [15], in which ~. and the electromagnetic field

are invariant under a group of symmetry operations, So, using

the usual commutation relations, we may find some relations

between elements of the matrices [S], [Z], [Y].

It has been shown in [15] and [16] that in another case,

which has been called gyrotropic antisymmetry (GA), under

fulfillment of certain requirements we can also find some

relation between the elements of the matrices, although no and

the electromagnetic fields are not invariant under geometrical

symmetry operations. In this case, we need to consider the

adjoint Maxwell’s equations in the adjoint media. In some

devices, GS and GA are met simultaneously and the use of

both of them gives additional information.

II. PROBLEM FORMULATION AND CONTENTS OF THE PAPER

We shall treat N-ports with a geometrical symmetry, bi-

asing by a direct magnetic field, which also has a certain

symmetry. A media which fills the N-port, is in general a

nonhomogeneous, gyromagnetic one with tensor properties.

Symmetry of the parameters of the media is consistent in

a certain way with the geometrical symmetry of the device.

The media may be with or without losses. Radiation from the

IV-port is permitted. The restriction which is imposed on the
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media is its linearity, Several modes can propagate in every

physical port in accordance with the network theory. In this

case, we are to consider a corresponding mode base of the

device. We shall use the classical network theory [9].

The purpose of the present work is a theory of such N-

ports, which is developed with the use of the color group

approach. The next section is devoted to a brief discussion

of color group properties. The conditions of GS and GA will

be presented in Section IV, Symmetries of the dc magnetic

field, which were not given attention earlier, are discussed in

Section V, Section VI shows some properties of N-ports with

GS and GA. Applications of the theory to different structures,

including existent devices, are given in Section VII.

III. MAGNETIC POINT GROUPS OF SYMMETRY

Symmetry operations bring the device into self-coincidence.

If the device contains only a media with symmetrical tensor

parameters, the geometrical symmetry of the device leads to

physical symmetry, i.e., to the symmetry of the em. fields

in the symmetrical points. As a result, we may find certain

relations between the [S] -elements [4].

If the device is filled with a gyromagnetic media (the perme-

ability is nonsymmetrical tensor), in addition to a geometrical

symmetry of the device, it is necessary to take into account the

symmetry of the magnetic parameters of the media, which in

turn depends on the symmetry of the external magnetic field

~o. In general, if the structure of If. is arbitrary, the theory

of symmetry cannot be applied, But luckily, most devices are

magnetized by no, which is consistent with the geometrical

symmetry of the device. It is often required to provide the

necessary conditions for the physical phenomenon that is used

in the device.

There are three cases in which the theory of symmetry

can help to simplify the [S]-matrix. In the first GS-case, the

symmetry of no corresponds to the geometrical symmetry of

the device. (Notice that the symmetry of Ho is defined by

taking into account its axial nature). In this case, symmetry of

the em. field exists, and we can find certain relations between

some elements of [S] using the method of the isotropic variant.

In the second GA-case, there is no usual symmetry of Do

and no symmetry of the em. field at all. Nevertheless, we may

get useful information about the [S]-matrix. The conditions

under which the two cases exist will be described in the next

section.

In the third case, both GS and GA are presented in one

device. Notice that in general the device is nonreciprocal in

every one of the three cases.

It is convenient to discuss symmetry properties of a device

using group-theoretical technique, especially when the device

has a high level of symmetry. There are many books on group

theory [18]–[20] and some papers concerning microwave

junctions based on the theory [5], [11]. Therefore, it will not be

given here. We shall consider only some relevant information

about magnetic point groups.

We often need to consider the reversal of Ho (or the mag-

netization M produced by the magnetic field) in the N-ports

with gyromagnetic media, in addition to the usual geometrical

operations such as rotation, reflection, and inversion, The

reversal of no is caused by the reversal of the current direction

under the time reversal operation T.

There are three categories of magnetic point groups, which

are a particular case of Shubnikov, or color groups [21]:

1) the groups containing operation T as an element;

2) the groups that do not include T at all; and

3) the groups containing T in combination with geometrical

operations.

We shall primarily be interested in the third category

of the groups and partly in the second one, because the

first category of the groups describes the devices without

gyrotropic materials. The devices described by the second

category are investigated by standard methods. Such devices

are, for example, classical three- and four-port circulators with

axial symmetry.

Let us enumerate some properties of magnetic groups of

the third category [20]. Let Ai, Ak ‘be geometrical operations

of symmetry. A point magnetic group may contain two types

of elements, with and without T. The former A4 = TAk,

sometimes referred to as antioperators, and the latter Ai do

not contain time reversal. T itself is not a member of the

point group but must occur only in combination with other

operators. This restriction eliminates the elements of odd-order

in rotation operations from magnetic groups; for instance, ‘TC3

(here C3 is three-fold rotation symmetry in the Schoenflies

notation). Notice that there cannot exist groups with elements

with T only, because a unit element E, which is in every

group, cannot be with T.

The sets of Ai and Ak are different; that is, no elements

AJ appear both with and without T. If the whole magnetic

group is G = {H, lkf~}, where H = {Ai}, Mk = {TAk}

(here the symbol { } denotes a rotation-reflection group), H

forms a subgroup of G, and the number of elements Ai must

be equal to the one of TAk. Replacing T by E, one obtains

the set G’ = {A,, Ak }, which is also a group. In Schoenflies

notation, the magnetic group is denoted by G’(H).

In any group the law of multiplication is fulfilled, so that the

product A,Ak of any two elements is also an element of the

group. We see that the product of Ai and TAk is an element

with T, but the product of TAj and TAk gives an element

without T

TAjTAk = AJT2Ak = AJAk

because T commutes with any ordinary operation and T2 := E.

The operations without T correspond to GS and the oper-

ations with T to GA. The groups which describe the devices

with GS only do not contain elements with T, and they belong

to the second category of magnetic groups,

One of the important questions in our discussion is gener-

ators of the symmetry groups. To find all the elements of a

group, it is possible to use a small number of elements known

as generators. A definition of generators is given in [19]: “A

set P of elements of a group G is a system of generators of the

group if every element of G can be written as the product of

a finite number of factors, each of which is either an element

of P or the inverse of such an element.” Detailed description
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of generators with their tables for many point groups is given
in [19].

Further, every generator may be presented by its equivalent

iV x lV matrix representation [R], or the symmetry operator of

the device. The structure of [R] and its dimension depend on

the mode bases of the device, that is, on the number of ports

and the number of modes, taking into consideration modes in

every port (the dimensions of [S]- and [R]-matrices are equal).

Each row and each column of the matrix [R] contains only one

nonzero element, +1 or – 1. These representations, or the sym-

metry operator matrices will also be further called generators.

IV. CONDITIONS FOR GS AND GA

Let [~] be a mapping operator. In the 3–D space with

the position vector P(z, y, z), it may represent any rotation,

reflection, and inversion. This operator connects the given

points P(X, y, .z) and the mapped (symmetrical) ones F (x, y, z)

r’ = [’y]r,

For example, for reflection in the plane z = O, the operator

[~] takes the form

–loo

[~] = 010 .

001

Consider two cases that are met under symmetrical trans-

formations of Maxwell’s equations [13], [14].

1) In the mapped points i’, Maxwell’s equations remain

in the same form, i.e., the equations are invariant under

these tmnsformations. The relation between the medias

parameters in the points F and F that must be fulfilled is

[L@)] = [Yl[wl[i (1)

where [~] is the permeability tensor. This is the case of

GS. The commutation relation for the scattering matrix

[S] and a generator [R] is

[R][s] = [S][R]. (2)

2) In the mapped points, Maxwell’s equations become the

adjoint ones. It is possible under the condition

[L@’)] = [71[@91t[’Yl (3)

where t denotes transposition. This is the case of GA

and the identity

[l?][s] = [s]’[R] (4)

is valid. The proof of (4) is given in [16].

It is shown in [23] that the dissipative parameters of a

gyromagnetic media and its adjoint are the same, so we may

treat a lossy media.

V. SYMMETRIES OF DC MAGNETIC FIELD

Consider some examples of the fields that are met in real

devices.

A. Uniform Field with Constant Direction [Fig. l(a)]

It is met in many devices, for instance in the classical three-

and four-port circulators. This approximation is used when the

(a) (b) (c)

Fig. 1. Structures of dc magnetic fields in ferrite devices.

dimensions of the device are less than those of the pole-shoes

of the magnet. Using Schoenflies notation, we may describe

the field as follows. It has ~-fold principal rotation axis, which

is along the z-axis with Cm symmetry, oz-reflection in a plane

z = O perpendicular to the principal axis, Inversion i may be

defined as i = CY7Z. Besides, in the magnetic group there

are the infinite set of antiplanes of symmetry T’ov, which

pass through the principal axis, and the infinite set of two-fold

antiaxes, which lie in the plane z = O with symmetry TCZ.

Hence, with identity operation E, we may write down the

elements of the group

E,ccO,Oz, i, Tc2, Tnv. (5)

B. The Field HO Is Produced by a Current Loop ~[Fig. (lb)]

This case is met in the classical ferrite switchable junction

circulators [26]. The symmetry of this field coincides with the

one of case 1.

C. The Ring Field Is Produced by a Current Line ~z [Fig. l(c)]

It is met, for example, in the ferrite phase shifters. Let

us enumerate the elements of the symmetry in Schoenflies

notation (z is the principal axis)

E,cw, ov, Tc2, Toz, Ti. (6)

Comparing (5) and (6) shows that the elements that coincide

in cases 1 and 3 are E, Cm, and TC2. The other three elements

differ by the time reversal operation.

Dc magnetic fields with other symmetries are used in de-

vices as well. In [25] for example, the field ~. has antiparallel

directions in two halves of the device; in [26] a device with

a quadruple field is considered, in [ 17]-field with linear

dependence with respect to one coordinate.

VI. PROPERTIESOF MATRICES

OF MULTIPORTS WITH GS AND GA

Consider first ferrite iV-ports with a symmetry plane. In this

case, the matrix [R] is symmetrical.

A. The Case of GS

In the most simple variant, the dc magnetic field is perpen-

dicular to the plane of symmetry. From the identity (2) for the

multiport on Fig. 2 with the plane of symmetry y = O, we

may write down relations for some pairs of ports

S2,3 = SN,N–l, S3,2 = SN–I,N,

&,N_~ = SN,3, SN–1,2 = &,N,

L51,2 = SIN, 5’2,1 = SN,I, and so on.
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Fig. 2. N-port with a plane of symmetry

The relations between the elements S1,2 and S2,1, S2,3 and

S3,2 and so on, are not determined. Hence, in general, these

connections are nonreciprocal.

Consider Su and S~~ in two symmetrical ports 1 and m,
for example, Z = 2, m = N. The. elements of the matrix

[R]l?tm = Rml = +1. From the symmetry, the signs of Rtm

and Rml must be the same, and

([Rl[LWZm = ~ R,sjrn = h.%m
j=l

since all the elements Rlj (j = 1,2, 3... N) in the row 1 are

equal to O except Rlm

since all the elements Rjm (j = 1,2,3...N) in the column

m are equal to O except Rz~. So from (2) we get SU = S~~.

The same result is obtained from ([R] [S])mt and ([S] [R])mz.

Hence the scattering coefficients Szl and Snm of symmetrical

ports are equal.

Consider now relations between the elements Slm and S’mz,

where 1 and m correspond symmetrical ports. Define the

diagonal elements of the matrix of the product [S] and [R]

([SIIRI)lI = f stjRjl = +Slm
j=l

j=l

From (2) we can make a conclusion that S’lm = S~l, so

that the connection between symmetrical ports is reciprocal.

The same result can be gotten from the consideration of the

elements ([S] [R])~m and ([R] [S])~~.

At first sight, the equality S’lm = Smt looks rather strange

because with ~. being perpendicular to the plane of symme-

try, Faraday’s effect is possible, which is nonreciprocal. An

explanation of this phenomena is as follows. First, the em.

fields in 1 and m ports are symmetrical [11] because the sense

of Faradays rotation does not depend on the sense of wave

propagation. We use an approximation of the network theory

with the definition of [S] in terms of equivalent voltage waves

[9]. So under this description, the nonreciprocal polarization

properties of the em. waves are lost. To take into consideration

the polarization effects, we should consider instead of the two

ports 1 and m, four ports with two orthogonal polarizations

(an example is shown in Section VII). Second, to obtain a

nonreciprocal device with Faraday’s effect, we have to bring

an asymmetry into the device (a twisted waveguide section

or two grids with nonsymmetrically oriented grating patterns).

However, in this case, we cannot use the mirror symmetry.

Examine now two ports 1 and m lying in the plane of

symmetry . They are 1 and ill in Fig. 2. The corresponding

elements are on the main diagonal of [R] and the signs of Rzl

and Rmm nw be he same or different. The elements &~
and S’mz in the product of [S] and [R] are in the places /m

and ml, respectively, and

([f$][~]hm= f s/jRjm = k%m, ([R][S])Zm = +SZm,
j=l

([S][R])ml = +Smt, ([R][S])ml = +Sml.

So if the signs of Rll and Rmm are the same, the connection

between the ports 1 and m is not determined. But if the

signs of Rlt and Rmm are different, from (2) we get Sz7m=

–Slm, Sml = –Sml, and a connection between these ports

is absent (Slm = Sml = O). It is easy to show that a

connection between the scattering coefficients Sll and Smm

is not determined.

B. The Case of GA

In this case, ~. can be, for instance, parallel to the plane

of symmetry y = O (Fig. 2). In general, the em. fields in

symmetrical ports are not symmetrical. From (4) we may write

some relations for pairs of ports

S2,3 = SN_l,N, S3,2 = SN,N_l,

&N_~ = S3,N, 5’N-l,Z = L9N,3,

s~,z = SN,l, L9z,1= &,N, and so on.

Bearing the symmetry of [R] in mind, the right-hand side

of (4) may be transformed as follows

[S]’[R] = [S]’[R]’ = ([R][S])’

and (4) takes the form

[R][S] = ([R] [S])’. (7)

Hence, the product of the matrices ((R] [S]) must be sym-

metrical, and the number of independent parameters of [S] is

reduced to N(N + 1)/2.

If two ports 1 and m are symmetrical in a geometrical sense,

the elements Sz~ and SA in ([R] [S]) are on the main diagonal

and they remain in the same places under transposition. Hence

from (4), it is not possible to find a type of connection between

1 and m ports. But for the reflection coefficients, we may write

Su = Smm.

Consider now two ports 1 and m lying in the antiplane of

symmetry. Scrutiny of (7) shows that we fail to find a relation

between S[l and Smm. Considering S’lm and Sml, we have

([Rl[fWz = f Rj%t = +s~m,([R][S])ml = M&.

j’=1

In this case, if Rll and R~m have the same signs, the

connection between the ports 1 and m is reciprocal and
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TABLE I

SYMMETRY OF THE ORTHORHOMBIC STRUCTURE WITH UNIFORM MAGNETIC FIELD

,

Elements of symmetry

Direct -tic E c. ‘ Tov TC2 m= i
—

1-1.

wtid E C2Z ox fJY CA c% o= i

Stich

RmdM

-w E Cti TCTX Toy TCX TC2Y Crz i

5 8

Fig. 3. Orthorhombic structures with uniform dc magnetic field along u-axis.

Slm = Sml. If Rll and Rmm have different signs, the equality

Slm = –Sml is valid. This relation may be explained as

follows. If there is a component of ~. parallel to the line

connecting the ports 1 and m, Faraday’s effect is possible.

It leads to nonreciprocal n--phase shift between these ports,

one, of them is connected parallel and the other-series to the

junction.

We may get similar results for [S]-elements in the cases with

axial and inversion symmetries. It should be reminded that GA

is possible with an axis of even order, and the matrix [R] is

symmetric

symmetry,

A. Applicatl

in the case of rotating through r. For inversion

1?] is always symmetrical.

VII. APPLICATIONS

m to Orthorhombic Structure

To demonstrate the basis of the method, let us consider a

hypothetical orthorhombic structure (Fig. 3) with a b c. The

structure is geometrically invariant under rotation, reflection,

and inversion. The ports of the structure which are connected

with the verteces 1–8, may be implemented for instance as

coaxial or circular waveguides with only one propagating

mode in every port.

If no external magnetic field is applied, the geometrical sym-

metry of the structure is Dzh. The group of symmetry consists

of 8 elements [20]: E-identity; C2Z, C2V, Czz-rotations around

z, g, z axes, respectively; aZ, Og, a,-reflections in the planes

a = O,y = O, and z = O, respectively; and i-inversion.
Generators of the group D2~ may be, for instance, C’2Z, C2Z,

and OZ. Using these generators, we can get the rest of the

elements: E = o;, C2V = C2Z CM, i = CZZOZ, OY =

C2ZUZ , !7. = Czzi. Note that we may choose another set

of independent generators, e.g., CZZ, Cx, o=.

The knowledge of generators allows us to find 8 x 8

generating matrices [R]c,x, [R]2z, [R]az of the structure,

which are representations of the corresponding symmetry

operators. Write, for instance, the matrix [R]c,x

00000100

00001000

00000001

00000010
[%x = 01000000

10000000

00010000

00100000

Apply to a case with dc magnetic field, Let Ho be along

the z-axis (Fig. 3). Comparing the symmetry group D2k

and the magnetic symmetry group of ~. (Section V) and
using the Curie principle of symmetry superposition (only

those elements remain in the resultant symmetry which are

common for the whole system [21]) we can write down the

magnetic symmetry group of the system: geometrical structure

plus magnetic field EII. This group Dzk (Czh) contains the

following elements

E, C2Z, o., i, TC2~, TC2Y, TcZ and Toy.

The elements Tau and TC2 of the group of no are

disintegrated into two elements each (Table I).
Using the set of generators [R]C,X, [R]C,Y, and [R]mz, we

must take into account that z is an antiaxis of symmetry.

Hence, to find the matrix [S], we should use the identities

[Wc2z [s1 = [S][RIC,, (8)

[%.ZIS1 = [Sl[%z (9)

[Rlc,x [s1 = [s] ’[R]c,x . (lo)
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(a) (b)

Fig. 4. Regular triangular pyramid. (a) Wkh uniform dc magnetic field. (b)
With ring magnetic field.

Two former identities coincide with those for the nongyromag-

netic structure, but the latter has another form. Equations (8)

and (9) correspond to the case of GS and (10) to one of GA.

The [S]-matrix defined from (8)–(10) has 12 independent

parameters

Sll [s12

[sl = :s]2 [s]l

x

Sll S12 S13 s~~ S15 SIC s~7’ s~~

S21 Sll S23 S13 S25 S15 S27 S17

s13 s14 sll slz s17 sla s15 slfj

S23 S13 S21 S11 S27 S17 S25 S15

S15 slf5 s17 s~z sll s12 S13 S14

S25 S~5 S27 S17 S21 SII S23 S13

s17 sla s15 sltj s13 slq sll s12

S27 S17 S25 S15 S23 S13 S21 S11

B. Application to Regular Triangular Pyramid

Apply now to a more realistic example of a four-port volume

structure (Fig. 4), which may be used as a nonreciprocal three-

way power divider. One example of the possible realizations

is given in [22]. It has the main (input) coaxial port four and

three output microstrip ports one, two, and three with the

edge-guided modes.

Let the external magnetic field be applied along the axis

of symmetry, which goes through vertex 4 [Fig. 4(a)] and the

system has only the three-fold axis of symmetry. Generator

of the group C3 is

101001

[R]c, = ;::: ‘
(11)

0001

It is a case of GS, so we use (2) and find [S1 with six

independent parameters

Isll S1’2 S13 S14 I

S13 Sll S12 Slq

[s1 = S12 s~3 Sll S14 (12)

Is,, s., s., S4, I
Analysis of (12) shows that because of SIA # SL1, the

structure may on principle be used as a nonreciprocal one with

isolating and/or phase-shifting properties. The 3 x 3 matrix in

the upper left corner of [S] corresponds to the matrix of a

three-port circulator.

NOW, we add to the system three antiplanes of symmetry

(GA) passing through the three-fold axis. Generators may be

chosen [R]c (11) and (R]m

1000

[R]a =
0010

0100

0001

The matrix [S] now has five independent parameters

Sll sr2 S13 S14

[s] =
S13 Sll S12 S14

S12 S13 Sll S14

S14 S14 S14 S44

and we cannot get nonreciprocal connections between the ports

one, two, three, and the port four, It is in accordance with the

conclusions of Section VI because, for example, ports one and

four lie in an antiplane of symmetry.

Consider now the pyramid which is biased with a ring

magnetic field [Fig. 4(b)]. If the structure has only the three-

fold axis of symmetry (GS), we get the matrix (12). If the

structure in addition to the axis possesses three planes of

symmetry (GS), the matrix [S] turns out to be

S12 Sll S12 S14
(13)[s] =

S12 s,, s,, S14

S41 S41 S41 S44

with 5 parameters. We see that in this case, the upper left 3 x 3

matrix represents the matrix of a symmetrical reciprocal three-

port (so if we consider a symmetrical three-port with three

planes of symmetry and with a ring magnetic field, it exhibits

only reciprocal properties; it is ako true for any regular plane

polygon).

C. Two Ports

Two examples of two-ports with planes of GS and GA will

be given in this subsection.

1) Circular Waveguides with Ferrite Rods: There are

planes of symmetry in both waveguides on Fig. 5(a) and (b).

In the left one, it is GS, and in the right waveguide-GA.

In both cases, ferrite rods are in the planes. In accordance

with the results of Section VI, for GS a nonreciprocal effect

is possible. But for GA, it is not. It has been mentioned in

[27] that in the waveguide in Fig. 5(a), the phase shift is

nonreciprocal. But in the waveguide in Fig. 5(b), the phase

shift is reciprocal.

2) Waveguides with Two Ferrite Elements: Two two-ports

with ferrites are shown in Fig. 6. The first one (Fig. 6(a)) is

the usual rectangular waveguide with two ferrite elements, 1

and 2. The plane of geometrical symmetry z = O corresponds

to GA so that the “directions” of nonreciprocal effect in

two ferrite elements situated in the left and right halves of the

waveguide are opposite. The second two-port (Fig. 6(b)) is the

Karp slow-wave ladder structure with isolating performance

[28]. The dc magnetic field here is perpendicular to the plane

of symmetry z = O, so that it is a case of GS and the

“directions” of the nonreciprocal effect in the ferrite elements
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TABLE II

CHARACTERISTICS OF EXISTENT DEVICES

l-hunk of

Type of device Schematic diagram Elements of OrOup of Generators [S]-mati iudqmrrdent

symmetry symmeW parameters

of [s]

2

B

I

0001 s ,1 s,, s,, s,,

a) coupled slot-liae 4- 1 s s,, s,, s,,
[NC, = : : : s“ s,, S22 s 10port ciroolat0rf30]

z x E, T~ C!.2(CJ

4 1000
s: s,, s,, s:

3 —ii

*

0100

yti [R]=x =
1000

1 2 0001

0010 % Sll % S14
b)nonreoiproerd

E, q, Gdcs)
0010 s,, s,, s,, s,, ~

tuneblele 3 4
directional tilter [31] TOX,TCZ [R]uy = Ooot s,, s,, s,, s,,

waveguides :::: s,, s,, s,, s,,
f “te
resonetor

% 1 -i& 1) The coupled slot-line four-port circulator has only

I two-fold antiaxis of symmetry (GA).

one

2) This four-port has one plane (GS), one antiplane (GA)

@ ~ for:::’=:’”

The previous discussions have been concerned with the

matrix [S]. It is not difficult to show that all the results of the

paper are valid for [Z] and [Y] matrices as well. Substitute,

(a) (b)

Fig. 5. Circular waveguides with a ferrite rod.
[s] = ([z] - [EJ)([z] + [J!q)-1

into the identity (4) and make some algebraic transformations

TTo To

lY’I

-m

[l?]([z] - [E])([z] + [E])-’
Y

—x x
i 2

= (([a - [~l)([q + [q)-l)’[R]>

[R]([z] + [E] - 2[E])([Z] + [E])-’
Till 4 2 = ([z]’+ [_E])-’([z]’ + [E] - 2[E])[R],

[R]([z] + [E])-1 = ([z]’ + [_E])-’[R].

(a) (b)
Multiplying the last equation from the left by ([Z]~ + [E]) and

Fig. 6. Two-porrs with two ferrite elements. (a) RectangularWavewide.(b) from the rightby ([z]+ [~]),we get
Slow-wave ladder structure.

1 and 2 are the same. So the concept of GS and GA may also

help in those cases when we need to define the “direction”

of nonreciprocal effect in symmetrical devices with several

ferrite elements.

D. Application to Some Existent Devices

In Table II, a compressed description of several ferrite

devices with different symmetries is presented. For every

device, its elements of symmetry, generators, [S]-matrix, and

the number of independent parameters have been derived.

[R][z] = [z] ’[R].

The identity

[R][Y] = [Y]’[R]

can be proved in a similar way.

Notice that both GS and GA cases are reduced, of course,

to a case with isotropic media ,and the correspondent matrices

are symmetrical when ~0 becomes null, but GS and GA are

not reduced to each other.

It is of interest to note that in the cases without a plane of

symmetry, there are so-called enantiomorphous modifications
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I

Fig. 7.

I

(a)

{

aA.*
e“ 4

~ HO

3

(b)

The enantiomorphous modifications of a two-way divider/combiner.

[21] of the devices, Consider, for instance, a microstrip di-

vider/combiner with the disc resonator [1], shown in Fig. 7(a).

It works under certain dh-ection of no. To get the device with

the opposite direction of ~o, we must take the enautiomor-

phous modification of the device, i.e., its mirror reflection

(Fig. 7(b)).

The following remark should be made as well. The symme-

try approach used in the paper, has an abstract nature. It gives

only necessary condhions for realization of nonreciprocal

effects in devices. Sufficient conditions may be received only

as a result of Maxwell’s equations solving. But if the theory

shows impossibility of nonreciprocal effects (i.e., it shows the

reciprocity), it is a sufficient condition.

IX, CONCLUSION

The main aim of this paper is to show a method of

finding the matrices [S], [2], and [Y] for symmetrical devices

with gyromagnetic media. It allows us to reduce the number

of independent parameters of the matrices. The approach

given in this paper is applicable to devices with different

symmetries and medias that comply with (1) or (3), with

the restriction of the linearity of the medias. The method is

applicable also for the devices with gyroelectric media. It

may be helpful especially for the devices with complicated

geometrical structures and magnetic fields.
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