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Generators of Magnetic Groups of
Symmetry and Commutation Relations

Victor A. Dmitriyev

Abstract— A general procedure is given for determining the
matrices [S], [Z]. and [Y] of linear symmetrical multiports with
gyromagnetic media. To obtain relations between the elements
of the matrices, the color groups, the Curie principle, and the
concept of gyrotropic symmetry (GS) and gyrotropic antisym-
metry (GA) are used. Symmetries of the dc magnetic field are
also considered. General properties of the multiports with GS
and GA are discussed. Applications of the symmetry analysis are
illustrated by two 3-D structures and some existent devices,

1. INTRODUCTION

ONRECIPROCAL and control devices with ferrites

have many applications in radioelectronics in a wide
range of frequencies, both in radio and optical domains.
Among these devices, there are reciprocal and nonreciprocal
microwave two-, three-, four-, and multiports, such as
isolators, phase shifters, circulators, switchers, nonrecip-
rocal dividers/combiners, control directional couplers, eic..
Some of them fulfill several functions simultaneously; e.g.,
dividing/combining and isolating [1], [2], dividing and
adjustable phase shifting [3], and isolating and transforming
of impedances [1], [2]. Several nonreciprocal elements with
magnetooptic materials have been proposed in optics. Many
of these devices with good performances are available
commercially. A vast number of papers and many books
are devoted to the subject.

These devices are based on different physical effects and
on the use of various transmission lines. Some of them have
3-D structures. Rigorous electrodynamic methods of analyzing
such devices are often very complicated. At the same time,
considerable results can be obtained by using the network
theory. Matrix methods with the condition of unitarity allow
us to find out some general properties of multiports without
having to solve Maxwell’s equations, to define realizability of
different functions, etc. Unfortunately, in many cases a general
matrix analysis of multiports is difficult because of the large
number of parameters of their matrices.

Considerable simplification of the problem is achieved by
the use of the theory of symmetry. Most existent devices
exhibit different types of spatial (geometrical) symmetry-
mirror reflection in a plane, rotation and others. By virtue of
symmetry analysis, the number of independent elements of the
matrices (scattering [S], impedance [Z] and admittance [Y])
may be reduced significantly. Intensive work in the analysis of
symmetrical reciprocal waveguide junctions has been made by
Montgomery et al. [4] and thoroughly carried out by Kerns [5].
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When ferrites appeared in the microwave technology, the
theory of symmetry and the apparatus of point groups have
been used to analyze and synthesize the N-port circulators
[6]. This approach does not differ from that being used for the
reciprocal devices. Bidirectionality and mode orthogonality in
nonreciprocal waveguides have been treated by Mc Isaac [7],
[8]. The [S]-matrix for the two-port with gyrotropic media has
been written in [9].

In the 1960°s and 1970’s, works concerning symmetry of the
electromagnetic field in gyrotropic media were accomplished
by Kong [10], Someda [11], Rao and Wu [12], and others.
Later, Altman, Schatzberg, and Suchy [13], [14] investigated
symmetry transformations and time reversal of currents and
fields in (bi)anisotropic media in a generalized form.

The problem of symmetry properties of the devices with
gyromagnetic media is more complicated than that of the
devices with isotropic media. The device with gyromagnetic
media presents a geometric-physical object which has a certain
geometrical symmetry and a symmetry of the magnetization
(or external biasing magnetic field Hy). Hence, we have to
consider the symmetry of the system: the geometrical structure
plus magnetic field.

One type of the possible symmetries has been considered
in the classical paper [6], namely, the N-fold rotational one.
It is a particular case of the general one called gyrotropic
symmetry (GS) [15], in which H and the electromagnetic field
are invariant under a group of symmetry operations. So, using
the usual commutation relations, we may find some relations
between elements of the matrices [S], [Z], [Y].

It has been shown in [15] and [16] that in another case,
which has been called gyrotropic antisymmetry (GA), under
fulfillment of certain requirements we can also find some
relation between the elements of the matrices, although Hy and
the electromagnetic fields are not invariant under geometrical
symmetry operations. In this case, we need to consider the
adjoint Maxwell’s equations in the adjoint media. In some
devices, GS and GA are met simultaneously and the use of
both of them gives additional information.

II. PROBLEM FORMULATION AND CONTENTS OF THE PAPER

We shall treat N-ports with a geometrical symmetry, bi-
asing by a direct magnetic field, which also has a certain
symmetry. A media which fills the N-port, is in general a
nonhomogeneous, gyromagnetic one with tensor properties.
Symmetry of the parameters of the media is consistent in
a certain way with the geometrical symmetry of the device.
The media may be with or without losses. Radiation from the
N-port is permitted. The restriction which is imposed on the
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media is its linearity. Several modes can propagate in every
physical port in accordance with the network theory. In this
case, we are to consider a corresponding mode base of the
device. We shall use the classical network theory [9].

The purpose of the present work is a theory of such N-
ports, which is developed with the use of the color group
approach. The next section is devoted to a brief discussion
of color group properties. The conditions of GS and GA will
be presented in Section IV. Symmetries of the dc magnetic
field, which were not given attention earlier, are discussed in
Section V. Section VI shows some properties of N-ports with
GS and GA. Applications of the theory to different structures,
including existent devices, are given in Section VIL

III. MAGNETIC POINT GROUPS OF SYMMETRY

Symmetry operations bring the device into self-coincidence.
If the device contains only a media with symmetrical tensor
parameters, the geometrical symmetry of the device leads to
physical symmetry, i.e., to the symmetry of the e.m. fields
in the symmetrical points. As a result, we may find certain
relations between the [S]-elements [4].

If the device is filled with a gyromagnetic media (the perme-
ability is nonsymmetrical tensor), in addition to a geometrical
symmetry of the device, it is necessary to take into account the
symmetry of the magnetic parameters of the media, which in
turn depends on the symmetry of the external magnetic field
Hy. In general, if the structure of Hy is arbitrary, the theory
of symmetry cannot be applied. But luckily, most devices are
magnetized by Hg, which is consistent with the geometrical
symmetry of the device. It is often required to provide the
necessary conditions for the physical phenomenon that is used
in the device.

There are three cases in which the theory of symmetry
can help to simplify the [S]-matrix. In the first GS-case, the
symmetry of Hy corresponds to the geometrical symmetry of
the device. (Notice that the symmetry of Hj is defined by
taking into account its axial nature). In this case, symmetry of
the e.m. field exists, and we can find certain relations between
some elements of [S] using the method of the isotropic variant.

In the second GA-case, there is no usual symmetry of Hy
and no symmetry of the e.m. field at all. Nevertheless, we may
get useful information about the [S]-matrix. The conditions
under which the two cases exist will be described in the next
section.

In the third case, both GS and GA are presented in one
device. Notice that in general the device is nonreciprocal in
every one of the three cases.

It is convenient to discuss symmetry properties of a device
using group-theoretical technique, especially when the device
has a high level of symmetry. There are many books on group
theory [18]-{20] and some papers concerning microwave
junctions based on the theory [5], [11]. Therefore, it will not be
given here. We shall consider only some relevant information
about magnetic point groups.

We often need to consider the reversal of Hy (or the mag-
netization M produced by the magnetic field) in the N-ports
with gyromagnetic media, in addition to the usual geometrical
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operations such as rotation, reflection, and inversion. The
reversal of Hy is caused by the reversal of the current direction
under the time reversal operation 7.

There are three categories of magnetic point groups, which
are a particular case of Shubnikov, or color groups [21]:

1) the groups containing operation 7" as an element;

2) the groups that do not include T' at all; and

3) the groups containing 7" in combination with geometrical

operations.

We shall primarily be interested in the third category
of the groups and partly in the second one, because the
first category of the groups describes the devices without
gyrotropic materials. The devices described by the second
category are investigated by standard methods. Such devices
are, for example, classical three- and four-port circulators with
axial symmetry.

Let us enumerate some properties of magnetic groups of
the third category [20]. Let A;, A; be geometrical operations
of symmetry. A point magnetic group may contain two types
of elements, with and without 7". The former M = TA;,
sometimes referred to as antioperators, and the latter A; do
not contain time reversal. 7' itself is not a member of the
point group but must occur only in combination with other
operators. This restriction eliminates the elements of odd-order
in rotation operations from magnetic groups; for instance, 7'Cy
(here Cs is three-fold rotation symmetry in the Schoenflies
notation). Notice that there cannot exist groups with elements
with T only, because a unit element £, which is in every
group, cannot be with T,

The sets of A; and A, are different; that is, no elements
A, appear both with and without 7. If the whole magnetic
group is G = {H, My}, where H = {A;}, My, = {TAx}
(here the symbol { } denotes a rotation-reflection group), H
forms a subgroup of G, and the number of elements A; must
be equal to the one of T'Aj. Replacing I" by FE, one obtains
the set G' = {A,, A}, which is also a group. In Schoenflies
notation, the magnetic group is denoted by G'(H).

In any group the law of multiplication is fulfilled, so that the
product A, Ay of any two elements is also an element of the
group. We see that the product of A; and T Ay, is an element
with 7, but the product of TA; and T Ay gives an element
without T

TA;TA, = A,T? Ay = A, Ay

because 7' commutes with any ordinary operation and 72 = E.

The operations without T' correspond to GS and the oper-
ations with T' to GA. The groups which describe the devices
with GS only do not contain elements with 7', and they belong
to the second category of magnetic groups.

One of the important questions in our discussion is gener-
ators of the symmetry groups. To find all the elements of a
group, it is possible to use a small number of elements known
as generators. A definition of generators is given in [19]: “A
set P of elements of a group G is a system of generators of the
group if every element of G can be written as the product of
a finite number of factors, each of which is either an element
of P or the inverse of such an element.” Detailed description



2670

of generators with their tables for many point groups is given
in [19].

Further, every generator may be presented by its equivalent
N x N matrix representation [R], or the symmetry operator of
the device. The structure of [R] and its dimension depend on
the mode bases of the device, that is, on the number of ports
and the number of modes, taking into consideration modes in
every port (the dimensions of [S]- and [R]-matrices are equal).
Each row and each column of the matrix [R] contains only one
nonzero element, +1 or —1. These representations, or the sym-
metry operator matrices will also be further called generators.

IV. CONDITIONS FOR GS AND GA

Let [y] be a mapping operator. In the 3-D space with
the position vector F(z,y, 2), it may represent any rotation,
reflection, and inversion. This operator connects the given
points F{z, y, z) and the mapped (symmetrical) ones ¥ (z, y, 2)

For example, for reflection in the plane x = 0, the operator
[v] takes the form
-1 0
0 1
0 0
Consider two cases that are met under symmetrical trans-
formations of Maxwell’s equations [13], [14].
1) In the mapped points ¥, Maxwell’s equations remain
in the same form, i.e., the equations are invariant under

these transformations. The relation between the medias
parameters in the points ¥ and T that must be fulfilled is

[1u(¥)] = M@0 ey
where [u] is the permeability tensor. This is the case of
GS. The commutation relation for the scattering matrix
[S] and a generator [R] is

[R][S] = [S][R]. @
2) In the mapped points, Maxwell’s equations become the
adjoint ones. It is possible under the condition

[(®)] = [][(E)]*H] 3)

where { denotes transposition. This is the case of GA
and the identity

0
[v] = 0]
1

[R][S] = [ST'[R] @
is valid. The proof of (4) is given in [16].

It is shown in [23] that the dissipative parameters of a
gyromagnetic media and its adjoint are the same, so we may
treat a lossy media.

V. SYMMETRIES OF DC MAGNETIC FIELD

Consider some examples of the fields that are met in real
devices.

A. Uniform Field with Constant Direction [Fig. 1(a)]

It is met in many devices, for instance in the classical three-
and four-port circulators. This approximation is used when the
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dimensions of the device are less than those of the pole-shoes
of the magnet. Using Schoenflies notation, we may describe
the field as follows. It has co-fold principal rotation axis, which
is along the z-axis with C, symmetry, o z-reflection in a plane
z = 0 perpendicular to the principal axis. Inversion ¢ may be
defined as ¢ = C20z. Besides, in the magnetic group there
are the infinite set of antiplanes of symmetry Toy-, which
pass through the principal axis. and the infinite set of two-fold
antiaxes, which lie in the plane z = 0 with symmetry 7'Cs.
Hence, with identity operation F, we may write down the
elements of the group

E,Co,02,4,TCs, Toy. &)

B. The Field Hy Is Produced by a Current Loop J[Fig. (1b)]

This case is met in the classical ferrite switchable junction
circulators [26]. The symmetry of this field coincides with the
one of case 1.

C. The Ring Field Is Produced by a Current Line J, [Fig. 1(c)]

It is met, for example, in the ferrite phase shifters. Let
us enumerate the elements of the symmetry in Schoenflies
notation (z is the principal axis)

E7 OOO7O-V7TCQ7TUZ7TZ" (6)

Comparing (5) and (6) shows that the elements that coincide
in cases 1 and 3 are F, U, and T'Cy. The other three elements
differ by the time reversal operation.

Dc magnetic fields with other symmetries are used in de-
vices as well. In [25] for example, the field Hy has antiparallel
directions in two halves of the device; in [26] a device with
a quadrupole field is considered, in [17]-field with linear
dependence with respect to one coordinate.

VI. PROPERTIES OF MATRICES
OF MULTIPORTS WITH GS AND GA

Consider first ferrite /N-ports with a symmetry plane. In this
case, the matrix [R] is symmetrical,

A. The Case of GS

In the most simple variant, the dc magnetic field is perpen-
dicular to the plane of symmetry. From the identity (2) for the
multiport on Fig. 2 with the plane of symmetry y = 0, we
may write down relations for some pairs of ports

S32 = Snv_1,n,

Sn_1,2 = S3n,
S31=58~n1,

Sa23 =8N nN-1,
San—1=5n3,

S12 =81 n, and so on.
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Fig. 2. N-port with a plane of symmetry.

The relations between the elements S 2 and Sp 1, 52,3 and
S3,2 and so on, are not determined. Hence, in general, these
connections are nonreciprocal.

Consider Sy and Sy, in two symmetrical ports [ and m,
for example, | = 2,m = N. The. elements of the matrix

[R|Riy, = Ryu = 1. From the symmetry, the signs of Ry,
and R,,; must be the same, and
N
([RISNim =) RiySijm = £Smm
i=1

since all the elements Ry;,(j = 1,2,3...
equal to O except Ry,

N) in the row 1 are

[S][R ZSIJ m = iSll

=1

since all the elements R, (7 = 1,2,3...N) in the column
m are equal to 0 except Fi,. So from (2) we get S = Sinm.
The same result is obtained from ([R][S])y, and ([S][R])m-
Hence the scattering coefficients .Sy, and 5,,,,, of symmetrical
ports are equal.

Consider now relations between the elements S, and S,,;,
where | and m correspond symmetrical ports. Define the
diagonal elements of the matrix of the product [S] and [R)]

N
([SIEDu =Y _ SijRs = £Sim
j=1

)ll = Z 15 ]l = i‘S'ml

2’

([R][S

From (2) we can make a conclusion that Sj,, = Sm, SO
that the connection between symmetrical ports is reciprocal.
The same result can be gotten from the consideration of the
elements ([S][R]))mm and ([B][S])mm-

At first sight, the equality S}, = S, looks rather strange
because with H being perpendicular to the plane of symme-
try, Faraday’s effect is possible, which is nonreciprocal. An
explanation of this phenomena is as follows. First, the e.m.
fields in / and m ports are symmetrical [11] because the sense
of Faradays rotation does not depend on the sense of wave
propagation. We use an approximation of the network theory
with the definition of [S] in terms of equivalent voltage waves
[9]. So under this description, the nonreciprocal polarization
properties of the e.m. waves are lost. To take into consideration
the polarization effects, we should consider instead of the two
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ports I and m, four ports with two orthogonal polarizations
(an example is shown in Section VII). Second, to obtain a
nonreciprocal device with Faraday’s effect, we have to bring
an asymmetry into the device (a twisted waveguide section
or two grids with nonsymmetrically oriented grating patterns).
However, in this case, we cannot use the mirror symmetry.

Examine now two ports [ and m lying in the plane of
symmetry . They are [ and M in Fig. 2. The corresponding
elements are on the main diagonal of [R] and the signs of Ry
and R, may be the same or different. The clements Sy,
and Sy,; in the product of [S] and [R] are in the places Im
and ml, respectively, and

([S1[R])im E S1jRjm = £Stm, ([R][S])im = £Sum,
(Mmmhi%“ (IRI[SDmi = £8mi-

So if the signs of Ry and R,,,, are the same, the connection
between the ports ! and m is not determined. But if the
signs of Ry and R,,,, are different, from (2) we get Sim =
—Sim; Smi = —Smi, and a connection between these ports
is absent (S, = Spu = 0). It is easy to show that a
connection between the scattering coefficients Sy and Sy,
is not determined.

B. The Case of GA

In this case, Hy can be, for instance, parallel to the plane
of symmetry y = O (Fig. 2). In general, the e.m. fields in
symmetrical ports are not symmetrical. From (4) we may write
some relations for pairs of ports

Se3=SNn-1,n, S32=5NnnN-1,
San—1=053n, Sn-—12=05n3,

S12 = SN 1, 821 = S1,n,

Bearing the symmetry of [R] in mind, the right-hand side
of (4) may be transformed as follows

[SV[R] = [SV'IR]" = ([RI[SD)
and (4) takes the form
[R][S] = ([R][S])". )

Hence, the product of the matrices ([R][S]) must be sym-
metrical, and the number of independent parameters of [S] is
reduced to N(N + 1)/2.

If two ports [ and m are symmetrical in a geometrical sense,
the elements Sy, and Sy, in ([R][S]) are on the main diagonal
and they remain in the same places under transposition. Hence
from (4), it is not possible to find a type of connection between
[ and m ports. But for the reflection coefficients, we may write
Sy = Smm-

Consider now two ports [ and m lying in the antiplane of
symmetry. Scrutiny of (7) shows that we fail to find a relation
between S;; and S,,,,,. Considering S;,,, and S,,,;, we have

and so on.

([RI[S])im ZRU im = ESim,  ([R)[S])mi = St

In this case, if Ry, and R,,, have the same signs, the
connection between the ports ! and m is reciprocal and
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TABLE 1
SYMMETRY OF THE ORTHORHOMBIC STRUCTURE WITH UNIFORM MAGNETIC FIELD
Elements of symmetry
Direct magnetic E Co " Te, TC; o, i
fistd Fo
Geometrical E Coz [+ 7% Oy Cax ng [«}9 1
structure
Resultant
Ww E Cas Tox Toy TCox TCyy oz i
o x,y, % axes, respectively; o, 0y, 0,-reflections in the planes
2 3 =0,y =0, and z = 0, respectively; and i-inversion.
b i Generators of the group Dy, may be, for instance, Ca,, Ca.,
. PR A and o.. Using these generators, we can get the rest of the
I v elements: £ = 02,0y = C,Cos, i = Cosos,0y =
| / C220,, 0, = Cs,4. Note that we may choose another set
i X of independent generators, e.g., Ca,, 0z, 0.
a { The knowledge of generators allows us to find 8 x 8
. , generating matrices [R]c, ., [R]2z.[R],z of the structure,
/% N which are representations of the corresponding symmetry
o operators. Write, for instance, the matrix [R]c,
5 8 00000T1O00
Fig. 3. Orthorhombic structures with uniform dc magnetic field along =-axis. 0 0001 0 O00O0
000 O0O0O0O0O1
Stm = Spu- If Ry and Ry, have different signs, the equality Rlcyy = 8 (1) 8 8 8 8 (1) 8
Sim = —Spm is valid. This relation may be explained as
. = . 10 0 00000
follows. If there is a component of Hg parallel to the line
connecting the ports [ and m, Faraday’s effect is possible. 00010000
001 60000

It leads to nonreciprocal w-phase shift between these ports,
one.of them is connected parallel and the other-series to the
junction.

We may get similar results for [S]-elements in the cases with
axial and inversion symmetries. It should be reminded that GA
is possible with an axis of even order, and the matrix [R] is
symmetrical in the case of rotating through =. For inversion
symmetry, [R] is always symmetrical.

VII. APPLICATIONS

A. Application to Orthorhombic Structure

To demonstrate the basis of the method, let us consider a
hypothetical orthorhombic structure (Fig. 3) with a b c. The
structure is geometrically invariant under rotation, reflection,
and inversion. The ports of the structure which are connected
with the verteces 1-8, may be implemented for instance as
coaxial or circular waveguides with only one propagating
mode in every port.

If no external magnetic field is applied, the geometrical sym-
metry of the structure is Dyy,. The group of symmetry consists
of 8 elements [20]: E-identity; Cyg, Cyy, C2,-rotations around

Apply to a case with dc magnetic field. Let Hy be along
the z-axis (Fig. 3). Comparing the symmetry group Doy
and the magnetic symmetry group of H, (Section V) and
using the Curie principle of symmetry superposition (only
those elements remain in the resultant symmetry which are
common for the whole system [21]) we can write down the
magnetic symmetry group of the system: geometrical structure
plus magnetic field Hy. This group Day,(Cyy) contains the
following elements

E,Cs.,0:,1,TCo,,TCyy,To, and To,.

The elements To, and TC, of the group of Hy are
disintegrated into two elements each (Table I).

Using the set of generators [R]¢, . ,[R]g,,, and [R], , we
must take into account that z is an antiaxis of symmetry.
Hence, to find the matrix [S], we should use the identities

[R]c,, (8] = [SI[R]c,, ®)
[R],z[S] = SI[R],~ &)
[Rlc,, [S] = [S]'R]g,, (10)
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Fig. 4. Regular triangular pyramid. (a) With uniform dc magnetic field. (b)
With ring magnetic field.

Two former identities coincide with those for the nongyromag-
netic structure, but the latter has another form. Equations (8)
and (9) correspond to the case of GS and (10) to one of GA.

The [S]-matrix defined from (8)—(10) has 12 independent
parameters

[S]; [Sl
S1=1isI, s,

S11 S12 S13 S S5 Sie Sir Sus

Se1 811 Saz Siz Ses S15 Sar Siv

S13 S14 Suu Si2 Sir Sis Sis Sie

y Sos S13 Sa1 Sin Sar Sir Sas Sis

S15 S16 Siz Sz Suu Sz Sz Sl

Sgs S5 Sar Sir Sar Su Sa3 Sis

S17 S18 S5 S Sz S Su S

Sor 817 Sas 815 Soz Siz S Su

B. Application to Regular Triangular Pyramid

Apply now to a more realistic example of a four-port volume
structure (Fig. 4), which may be used as a nonreciprocal three-
way power divider. One example of the possible realizations
is given in {22]. It has the main (input) coaxial port four and
three output microstrip ports one, two, and three with the
edge-guided modes.

Let the external magnetic field be applied along the axis
of symmetry, which goes through vertex 4 [Fig. 4(a)] and the
system has only the three-fold axis of symmetry. Generator
of the group Cj is

10100
0 0 1 0
0 0 0 1

It is a case of GS, so we use (2) and find [S] with six
independent parameters

S11 Siz Si3 Suia
S13 S11 Sz Sia
S| = . 12
151 S12 Sz S11 Suia (12)
Sq1 Sa1 Sy Sus

Analysis of (12) shows that because of Sj4 # S41, the
structure may on principle be used as a nonreciprocal one with
isolating and/or phase-shifting properties. The 3 X 3 matrix in
the upper left corner of [S] corresponds to the matrix of a
three-port circulator.
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Now, we add to the system three antiplanes of symmetry
(GA) passing through the three-fold axis. Generators may be
chosen [R]c (11) and [R],

1 0 00
0 01 0
[R]a o1 0 of
0 0 0 1
The matrix [S] now has five independent parameters

S11 S12 Siz Sua
(5] = Si3 Sz Sz Suia
S12 S13 Suu Su
S1a S1a S1a Su

and we cannot get nonreciprocal connections between the ports
one, two, three, and the port four, It is in accordance with the
conclusions of Section VI because, for example, ports one and
four lie in an antiplane of symmetry.

Consider now the pyramid which is biased with a ring
magnetic field [Fig. 4(b)]. If the structure has only the three-
fold axis of symmetry (GS), we get the matrix (12). If the
structure in addition to the axis possesses three planes of
symmetry (GS), the matrix [S] turns out to be

Si1 Sz S1z Sua
S12 S11 Sz Suia
S| = 13
[5] S12 Sz S11 Sia (13)
Sa1 Sar Sa1 Sy

with 5 parameters. We see that in this case, the upper left 3 x 3
matrix represents the matrix of a symmetrical reciprocal three-
port (so if we consider a symmetrical three-port with three
planes of symmetry and with a ring magnetic field, it exhibits
only reciprocal properties; it is also true for any regular plane
polygon).

C. Two Ports

Two examples of two-ports with planes of GS and GA will
be given in this subsection.

1) Circular Waveguides with Ferrite Rods: There are
planes of symmetry in both waveguides on Fig. 5(a) and (b).
In the left one, it is GS, and in the right waveguide-GA.
In both cases, ferrite rods are in the planes. In accordance
with the results of Section VI, for GS a nonreciprocal effect
is possible. But for GA, it is not. It has been mentioned in
[27] that in the waveguide in Fig. 5(a), the phase shift is
nonreciprocal. But in the waveguide in Fig. 5(b), the phase
shift is reciprocal.

2) Waveguides with Two Ferrite Elements: Two two-ports
with ferrites are shown in Fig. 6. The first one (Fig. 6(a)) is
the usual rectangular waveguide with two ferrite elements, 1
and 2. The plane of geometrical symmetry x = 0 corresponds
to GA so that the “directions” of nonreciprocal effect in
two ferrite elements situated in the left and right halves of the
waveguide are opposite. The second two-port (Fig. 6(b)) is the
Karp slow-wave ladder structure with isolating performance
[28]. The dc magnetic field here is perpendicular to the plane
of symmetry x = 0, so that it is a case of GS and the
“directions” of the nonreciprocal effect in the ferrite elements
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TABLE I
CHARACTERISTICS OF EXISTENT DEVICES
‘Number of
Type of device Schematic diagram Elements of | Group of Generators [S}-matrix independent
symmetry | symmetry parameters
of [8]
y 2_ 0 0 0 l Sll SIZ Sl] Sll
a)coupledslot—]inefi- 1 R]. = 0 109 S, S. S, S,
port circulator{30] 7 X E, T(‘/z Cl(cl) C2 1 0 0 S S g S 10
( 4 1 0 0 0 31 1 22 11
Sll S.’Il S:! Sll
3 —H
- 0100
vyl H R -] ©0°
1L ]2 s, [0 00t
= 6 0 1 0 Su Su Su Su
b) nonreciprocal 1 oot oS, S, S, S,
tunablele 3 L 4 E, Sy, QV(CS) 0 0 0 1 S1 Su S2 s 6
directional filter [31] Tox, TC, [R]m,=1 0 0 of v Sw Pu On
waveguides S, S, 8, S,
fetrite 0 1 0 0
resonator
o To 1) The coupled slot-line four-port circulator has only one
two-fold antiaxis of symmetry (GA).
2) This four-port has one plane (GS), one antiplane (GA)
and one antiaxis of symmetry (GA).
L _ VIIL DISCUSSION
! The previous discussions have been concerned with the
matrix [S]. It is not difficult to show that all the results of the
paper are valid for [Z] and [Y] matrices as well. Substitute,
for example, the relation
(a) (b)
Sl = (2] - [EDN([Z] + [E])~!
Fig. 5. Circular waveguides with a ferrite rod. [ ] ([ ] [ ])([ ] + [ ])
into the identity (4) and make some algebraic transformations
Ho Ho
I vy ) . [RI([2] - [ED([2] + [E])
e | X X = (([2] - [ED(2] + [ED )[R,
. B [R)(12] + [B] - 2(E))(12] + [B) ™
- B[] 2H = (21 + [B) (2" + [E] - 21E)[R),
[R)([2] + [ED " = ([2]* + [ED 7' [R]-
@ ®) Multiplying the last equation from the left by ([Z]t + [E]) and

Fig. 6. Two-ports with two ferrite elements. (a) Rectangular waveguide. (b)
Slow-wave ladder structure.

1 and 2 are the same. So the concept of GS and GA may also
help in those cases when we need to define the “direction”
of nonreciprocal effect in symmetrical devices with several
ferrite elements.

D. Application to Some Existent Devices

In Table II, a compressed description of several ferrite
devices with different symmetries is presented. For every
device, its elements of symmetry, generators, [S]-matrix, and
the number of independent parameters have been derived.

from the right by ([Z] + [E]), we get
[R][Z] = [Z]'[R].

The identity
[R][Y] = [Y]'[R]

can be proved in a similar way.

Notice that both GS and GA cases are reduced, of course,
to a case with isotropic media ,and the correspondent matrices
are symmetrical when Hy becomes null, but GS and GA are
not reduced to each other.

It is of interest to note that in the cases without a plane of
symmetry, there are so-called enantiomorphous modifications



DMITRIYEV: GENERATORS OF MAGNETIC GROUPS OF SYMMETRY AND COMMUTATION RELATIONS

|
' :
T
b
» g
~
s = 2 E 4
G
w
2
Ho o §_‘ @ Ho
3 i i 3
i
(@ ®)

Fig. 7. The enantiomorphous modifications of a two-way divider/combiner.

[21] of the devices. Consider, for instance, a microstrip di-
vider/combiner with the disc resonator [1], shown in Fig. 7(a).
It works under certain direction of Hy. To get the device with
the opposite direction of Hy, we must take the enantiomor-
phous modification of the device, i.e., its mirror reflection
(Fig. 7(b)).

The following remark should be made as well. The symme-
try approach used in the paper, has an abstract nature. It gives
only necessary conditions for realization of nonreciprocal
effects in devices. Sufficient conditions may be received only
as a result of Maxwell’s equations solving. But if the theory
shows impossibility of nonreciprocal effects (i.e., it shows the
reciprocity), it is a sufficient condition.

IX. CONCLUSION

The main aim of this paper is to show a method of
finding the matrices [S], [Z], and [Y] for symmetrical devices
with gyromagnetic media. It allows us to reduce the number
of independent parameters of the matrices. The approach
given in this paper is applicable to devices with different
symmetries and medias that comply with (1) or (3), with
the restriction of the linearity of the medias. The method is
applicable also for the devices with gyroelectric media. It
may be helpful especially for the devices with complicated
geometrical structures and magnetic fields.
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